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Abstract. Based on a continuously differentiable exact penalty function and a regularization tech-
nique for dealing with the inconsistency of subproblems in the SQP method, we present a new SQP
algorithm for nonlinear constrained optimization problems. The proposed algorithm incorporates
automatic adjustment rules for the choice of the parameters and makes use of an approximate dir-
ectional derivative of the merit function to avoid the need to evaluate second order derivatives of
the problem functions. Under mild assumptions the algorithm is proved to be globally convergent,
and in particular the superlinear convergence rate is established without assuming that the strict
complementarity condition at the solution holds. Numerical results reported show that the proposed
algorithm is promising.
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1. Introduction

We consider the following nonlinear inequality constrained optimization

(P ) min f (x),

s.t. g(x) � 0,

where f : R
n → R and g : R

n → R
m are assumed to be twice continuously dif-

ferentiable. Such problems arise in a variety of applications in science, engineering
and management.

Since the late 1970s, the sequential quadratic programming (SQP) method is
considered among the most effective methods for solving nonlinear programming
problems. Many techniques for solving problem (P) have been proposed, e.g., see
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Boggs and Tolle [1] for a review of these techniques. The basic idea of a typical
SQP method is as follows: Given an approximate solution, say x, problem (P) is
modeled by the quadratic programming (QP) subproblem

QP(x;H) min 1
2d

THd + ∇f (x)T d,

s.t. g(x) + ∇g(x)T d � 0,
(1)

where H ∈ R
n×n is symmetric positive definite; then the solution d (referred to as

the search direction) to subproblem (1) is used to generate a better approximation x̃:

x̃ := x + αd.

A suitable merit function, which usually depends on some positive parameter, is
chosen to measure progress towards a solution to problem (P) and the steplength α

is determined to yield a sufficient decrease in the merit function.
A serious limitation in the application of the SQP method to problem (P) is the

possible inconsistency of the constraints in (1), i.e., the feasible set of subproblem
(1) may be empty. To address this difficulty, various avenues have been proposed,
e.g., see [2, 3, 12, 13, 18].

Recently, Spellucci [17] presented a new regularization technique for dealing
with inconsistent QP subproblems in the SQP method. The modified QP subprob-
lem in [17] is as follows:

min 1
2d

T Hd + ∇f (x)T d + τeTAuA + 1
2β‖uA‖2,

s.t. gA(x) + ∇gA(x)
T d − uA � 0, uA � 0,

(2)

where A := A(x, δ) is an index set to be introduced later and e is a vector whose
components are all one. The method has the following merits:

• Subproblem (2) is always feasible with ui = max{gi(x), 0}, i ∈ A and d = 0.
• Only constraints from A are considered.
• A simple automatic adjustment rule for the parameter τ is used.

By using l1-exact penalty function as the merit function, the method was shown
to be globally convergent. However, rate of convergence results can be obtained
under stronger regularity conditions only. In particular, the strict complementarity
condition for problem (P) at the solution has to be assumed so that a wide variety
of practical applications may not be treated in this framework.

By using the differentiable exact penalty function developed by Lucidi [10] as
the merit function, Facchinei [6] proposed a hybrid method for solving problem
(P). Its basic idea is: if subproblem (1) is consistent and its solution is acceptable,
then the solution is used as the search direction; otherwise, a first order direction,
which is an approximation of the gradient of the exact penalty function introduced
in [10], is used. The method was globally and superlinearly convergent. In particu-
lar, the superlinear convergence rate was obtained without requiring that the strict
complementarity condition of problem (P) holds at the solution.
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In this paper, based on the continuously differentiable exact merit function
proposed by Lucidi [10], we present a new SQP algorithm for problem (P). The
subproblem of the proposed algorithm is a slight modification of problem (2) and
hence the new algorithm can be regarded as an application of Spellucci’s approach
to the merit function proposed by Lucidi [10]. Under mild assumptions we show
that the algorithm is globally convergent. Without requiring the strict complement-
arity condition we prove that the convergence rate is superlinear. At the same
time our approach preserves all the merits of Spellucci’s method in [17]. Here we
summarize some relevant features of the new algorithm as follows:

• The subproblem of the new algorithm is always feasible.
• Only constraints from a subset of I := {1, . . . , m} are considered.
• Simple automatic adjustment rules for the parameters are used.
• Only first order derivatives of the problem functions are needed.
• Global and superlinear convergence are obtained.
• Strict complementarity condition of problem (P) at the solution is not assumed.

The paper is organized as follows. In the next section we discuss some basic
assumptions and recall some important results on the merit function proposed in
[10]. In Section 3 we give a detailed description of the subproblem and of the
new algorithm, and prove that the proposed algorithm is well defined. Section
4 devotes to prove global convergence of the algorithm towards KKT points of
problem (P). In Section 5 we deal with superlinear convergence of the algorithm.
Some numerical results are reported in Section 6 and some conclusive remarks are
given in the last section.

We give a list of notation employed. Throughout the paper, the symbol ‖ · ‖ will
refer to the Euclidean vector norm or its associated matrix norm. For all x ∈ R

n,
we define the following index sets:

I0(x) := {i ∈ I : gi(x) = 0},
P (x) := {i ∈ I : gi(x) > 0},
P0(x) := P(x) ∪ I0(x),

A(x, δ) := {i ∈ I : gi(x) � −δ},
(3)

where δ > 0 is a parameter. We denote by g+(x) the vector with components
g+
i (x) := max[0, gi(x)], i ∈ I.

Given h : R
n → R

m and a subset B of I , we denote by hB(x) the subvector
of h(x) with components hi(x), i ∈ B and by ∇hB(x) the transposed Jacobian of
hB at x. Specially, if the index set depends on parameters, we do not reflect this
dependence because the given parameters will always be clear from the context. For
example, we denote by hA(x) the subvector of h(x) with components hi(x), i ∈
A(x, δ).
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2. Preliminaries

In this section we discuss some basic assumptions and review some properties of
the continuously differentiable exact penalty function developed in [10].

We denote by

F := {x ∈ R
n : g(x) � 0}

the feasible set of problem (P). The Lagrangian function associated with problem
(P) is the function

L(x, λ) := f (x) + λT g(x).

A KKT pair for problem (P) is a pair (x̃, λ̃) ∈ R
n×m such that KKT conditions

∇L(x̃, λ̃) = 0, g(x̃) � 0, λ̃ � 0, G(x̃)λ̃ = 0 (4)

hold, where

G(x) := diag(gi(x))

and

∇L(x, λ) := ∇f (x) +
m∑
i=1

λi∇gi(x). (5)

The point x̃ is said to be a KKT point of problem (P). If all conditions in (4) except
for λ̃ � 0 are satisfied, the point x̃ is said to be a stationary point of problem (P).

Letting α > 0 be a given scalar, we consider an open perturbation of the feasible
set F defined by

A :=
{
x ∈ R

n :
m∑
i=1

g+
i (x)

3 < α

}
,

and we denote by Ā the closure of A and by ∂A its boundary. Moreover, we
introduce the function

a(x) := α −
m∑
i=1

g+
i (x)

3,

which takes positive values on A and is zero on ∂A. Set ψ(x) := ∑m
i=1 g

+
i (x).

In the sequel we make the following hypotheses:

ASSUMPTION A1. The set A is bounded.

ASSUMPTION A2. At every x ∈ F , the vectors ∇gi(x), i ∈ I0(x) are linearly
independent.
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ASSUMPTION A3. At every x ∈ Ā\F , the Mangasarian-Fromowitz condition
holds; i.e., there exists some z ∈ R

n such that ∇gP0(x)
T z < 0.

Assumptions A1 and A2 are the same as those of [6]. Assumption A1 is of-
ten substituted by the assumption: the level sets of the objective function in un-
constrained optimization are compact or the sequence of points produced by the
algorithm is bounded; Assumption A2 is a common assumption in all algorithms
dealing with global convergence of methods for solving problem (P). Assumption
A3 involves the behaviour of the constraint functions outside the feasible set. Here
Assumption A3 is slightly stronger than the related assumption in [6], this is due
to the requirement of our subproblems. Moreover, under Assumptions A1 and A3,
F is nonempty.

We now recall the class of multiplier functions proposed in [10]; this class is a
generalization of the multiplier function proposed by Glad and Polak [7].

PROPOSITION 2.1. The following statements hold.
(i) For every x ∈ A, there exists a unique minimizer λ(x) of the quadratic

function in λ

‖∇xL(x, λ)‖2 + ‖G(x)λ‖2 +
m∑
i=1

g+
i (x)

3‖λ‖2

over R
m, given by

λ(x) = −M−1(x)∇g(x)T ∇f (x), (6)

where M(x) is the m×m matrix defined by

M(x) = ∇g(x)T ∇g(x) + G2(x) +
m∑
i=1

g+
i (x)

3Im,

and Im is the m× m identity matrix.
(ii) λ(x) is continuously differentiable in A.
(iii) If (x̃, λ̃) ∈ R

n × R
m is a KKT pair for problem (P ), we have λ(x̃) = λ̃.

We then can define the following exact penalty function for problem (P):

Z(x; ε) := f (x) + λ(x)T c(x; ε) + 1

εa(x)
‖c(x; ε)‖2, (7)

where

c(x; ε) := g(x) + Y (x; ε)y(x; ε),

yi(x; ε) :=
{
− min

[
0, gi (x) + εa(x)

2
λi(x)

]}1/2

, i ∈ I,

Y (x; ε) := diag(yi(x; ε)).
(8)
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The penalty function Z(x; ε) was introduced by Lucidi [10] and the introduc-
tion of such a peculiar function was intended to weaken the conditions which
ensures the equivalence between the solutions of problem (P) and the solutions
of the unconstrained minimization problem of Z(x; ε) on A. Later, by using the
penalty function Z(x; ε) as the merit function, we will remove the strict comple-
mentarity condition in the analysis of the superlinear convergence of the proposed
algorithm.

Note that the particular form of the barrier term 1
εa(x)

causes the penalty func-

tion Z to go to infinity on ∂A, so that its level sets (contained in A) are compact.
We now collect some properties of Z in the next proposition, more details can be
found in [10].

PROPOSITION 2.2. The following statements hold.
(i) For any ε > 0, Z(x; ε) is continuously differentiable at all x ∈ A, with

gradient

∇Z(x; ε) =∇f (x) + ∇g(x)λ(x) + ∇λ(x)c(x; ε)

+ 1

εa(x)

m∑
i=1

ri(x; ε)∇gi(x), (9)

where for i ∈ I ,

ri(x; ε) := 2ci(x; ε) + 3[‖c(x; ε)‖2/a(x)]g+
i (x)

2. (10)

(ii) For any ε > 0, Z(x; ε) � f (x) for all x ∈ F .
(iii) For every ε > 0, let x be such that c(x; ε) � 0. Then x ∈ F .
(iv) If f and g are three times continuously differentiable, then for any ε > 0,

Z(x; ε) is twice continuously differentiable for all x ∈ A except at the
points where gi(x) + εa(x)λi(x)/2 = 0 for some i.

(v) Let (x̃, λ̃) be a KKT pair for problem (P ). Then for every ε > 0, we have
∇Z(x̃; ε) = 0, c(x̃; ε) = 0 and Z(x̃; ε) = f (x̃).

(vi) Let x̃ ∈ A be a stationary point of Z(x; ε) and assume that c(x̃; ε) = 0.
Then (x̃, λ(x̃)) is a KKT pair for problem (P ).

3. Algorithm

In this section we propose a new SQP algorithm for solving problem (P) and prove
that the proposed algorithm is well defined. At each iteration, we first solve a
subproblem of the following form

QP1(x,H ;A, τ, β) min 1
2d

T Hd + ∇f (x)T d + τeTP uP + 1
2β‖uP ‖2,

s.t. gP (x) + ∇gP (x)
T d − uP � 0, uP � 0,

gA\P (x) + ∇gA\P (x)T d � 0,
(11)
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where the sets A := A(x, δ) and P := P(x) are defined in Section 1 and H ∈ R
n×n

is symmetric positive definite. The KKT conditions of (11) are as follows:

Hd + ∇f (x) + ∇gA(x)ρA = 0,

βui + τ − ρi − νi = 0, ∀i ∈ P,

νP � 0, uP � 0, νTP uP = 0,

ρP � 0, gP (x) + ∇gP (x)
T d − uP � 0,

ρTP [gP (x) + ∇gP (x)
T d − uP ] = 0,

ρA\P � 0, gA\P + ∇gA\P (x)T d � 0,

ρTA\P [gA\P (x) + ∇gA\P (x)T d] = 0.

(12)

Subproblem (11) is different from (2) in that: in (11) a slack variable ui is used
only for every constraint satisfying gi(x) > 0 so that slack variables will disappear
when the iterate is close to the feasible region. Since we cannot guarantee that a
solution d to (11) is a descent direction of the merit function Z, we have to solve
another subproblem of the form

QP2(x,H ;A, τ, β) min 1
2d

T Hd + ∇f (x)T d + ∑
i∈P

τvi(x)ui + 1
2β‖uP ‖2,

s.t. gP (x) + ∇gP (x)
T d − uP � 0, uP � 0,

gA\P (x) + ∇gA\P (x)T d � 0,
(13)

where vi(x) := gi(x) + 3
2‖g+(x)‖2gi(x)

2/a(x), i ∈ P(x). It is obvious that (11)
is a special case of (13) with vP (x) = eP .

Similar to the analysis performed in [17], we can deduce the following proper-
ties of problem QP1(x,H ;A, τ, β), whose proofs are given in Appendix A.

PROPOSITION 3.1. If (1) is consistent and has a solution d with ‖d‖ small
enough, then (d, uP = 0) solves (11) for any β > 0, provided τ large enough.
Conversely, if (d, 0) is a solution of (11) and ‖d‖ is small enough, then d is a
solution of (1).

PROPOSITION 3.2. Under Assumptions A1-A3, there exists some η̄ > 0 such that
for any x ∈ 3(η̄) := {x ∈ R

n : ψ(x) � η̄}, (1) is consistent. Furthermore, if ‖H‖
and ‖H−1‖ are bounded from above, then there exists some τ̄ > 0 such that for
any x ∈ 3(η̄), β > 0 and τ � τ̄ , (d, uP = 0) solves (11); i.e., (11) is equivalent
to the following problem:

QP0(x,H ;A) min 1
2d

T Hd + ∇f (x)T d,

s.t. gA(x) + ∇gA(x)
T d � 0.

(14)

PROPOSITION 3.3. Under Assumptions A1-A3, there exists some τ ∗ = τ ∗(‖H‖,
‖H−1‖, β) > 0, such that for any x ∈ A, δ > 0 and τ � τ ∗ the solution (d, uP )
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of problem QP1(x,H ; A(x, δ), τ, β) satisfies∑
i∈P(x)

ui � Lψ(x)

with some 0 < L < 1 independent of x and δ. τ ∗ is bounded from above if
‖H‖, ‖H−1‖, β are.

COROLLARY 3.1. Under Assumptions A1–A3, for every η > 0, there exists some
τ ∗ = τ ∗(‖H‖, ‖H−1‖, β, η) > 0 such that for any x ∈ {x ∈ A : ψ(x) � η}, δ >
0 and τ � τ ∗ the solution (d, uP ) of problem QP2(x,H ;A(x, δ), τ, β) satisfies∑

i∈P(x)
vi(x)ui � L

∑
i∈P(x)

vi(x)gi(x)

with some 0 < L < 1 independent of x and δ. Moreover, if ‖H‖, ‖H−1‖, β are
bounded from above and η is bounded away from zero, then τ ∗ is bounded from
above.

The next proposition establishes the connection between the solutions of the
original problem (P ) and of the subproblem QP1(x,H ;A, τ, β).
PROPOSITION 3.4. Assume that Ã ⊇ P0(x̃), τ̃ > 0 and β̃ > 0 are given. Then

(i) If (x̃, λ̃) is a KKT pair for problem (P ), then P(x̃) = ∅ and for any positive
definite matrix H ∈ R

n×n, (0, λ̃Ã) is a KKT pair for problem QP1(x̃,H ; Ã, τ̃ , β̃).
(ii) If (d, uP ) = (0, 0) is a KKT point of problem QP1(x̃,H ; Ã, τ̃ , β̃), where

H ∈ R
n×n is positive definite, then x̃ is a KKT point of problem (P ).

Proof. (i) The assertion follows directly from the KKT conditions of problem
(P) and of problem QP1(x̃,H ; Ã, τ̃ , β̃).

(ii) Since (d, uP ) = (0, 0) is a KKT point of problem QP1(x̃,H ; Ã, τ̃ , β̃), it
follows from (12) that

∇f (x̃) + ∇gÃ(x̃)ρÃ = 0, gÃ(x̃) � 0, ρÃ(x̃) � 0, and gÃ(x̃)
T ρÃ(x̃) = 0,

which implies that (x̃, ρ) with ρI\Ã := 0 satisfies KKT conditions (4). Hence x̃ is
a KKT point of problem (P ). �

By Proposition 3.4 (ii), we deduce that: if x̃ ∈ F and d = 0 is a KKT point of
problem QP0(x̃,H ; Ã), then x̃ is a KKT point of problem (P ). Moreover, Propos-
ition 3.4 is still valid if QP1(x̃,H ; Ã, τ̃ , β̃) is replaced by QP2(x̃,H ; Ã, τ̃ , β̃).

In this paper we make use of an approximate directional derivative which re-
quires only the evaluation of first order derivatives of the problem functions, as was
already considered in [6]. By approximating the term wT∇λ(x) (which contains
the second-order derivatives of the problem functions) by finite differences, we
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approximate the directional derivative of ∇Z(x; ε) along the direction w by

DZ(x,w; ε, t) :=∇L(x, λ(x))T w + 1

εa(x)

m∑
i=1

ri(x; ε)∇gi(x)
T w

+ 1

t
[λ(x + tw) − λ(x)]T c(x; ε).

(15)

It is obvious that we have

DZ(x,w; ε, t) = ∇Z(x; ε)T w + wT (∇λ(x + ξw)− ∇λ(x))c(x; ε)
for some ξ ∈ (0, t), and

lim
y→x
v→w
t↓0

DZ(y, v; ε, t) = ∇Z(x; ε)T w. (16)

We now state an algorithm for solving problem (P) and then give some further
comments.

ALGORITHM 3.1.
Data: x1 ∈ A, H 1 ∈ R

n×n, θ ∈ (0, 1), µ ∈ (0, 1
2 ), σ ∈ (0, 1), σ1 > 1, ω ∈ (0, 1),

ε1 > 0, τ 1 > 0 , γ 1 > 0 and β1 > 0.
Set k := 1.

Step 0. Set δk := εka(xk)
2 max

{
|λi(xk)| : gi(xk) + εka(xk)

2 λi(x
k) � 0, i ∈ I

}
.

Denote

P k := P(xk) and Ak := A(xk, δk).

Step 1. Compute (dk, uk
P k ), the solution of problem QP1(x

k,H k;Ak, τ k, βk). If
(dk, uk

P k ) = (0, 0), stop.

Step 2. If
∑
i∈Pk

uki � (1 − ω/τk)ψ(xk), go to Step 4.

Step 3. Set τ k := σ1τ
k , go to Step 1.

Step 4. If ψ(xk) � γ k and
∑
i∈Pk

uki �= 0, then set γ k := γ k/σ1 and τ k := σ1τ
k.

Step 5. If ∑
i∈Pk

vi(x
k)uki � (1 − ω/τk)

∑
i∈Pk

vi(x
k)gi(x

k), (17)

go to Step 8.
Step 6. Compute (dk, uk

P k ), the solution of problem QP2(x
k,H k;Ak, τ k, βk). If

(17) is satisfied, go to Step 8.
Step 7. Set τ k := σ1τ

k , go to Step 6.
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Step 8. Set αk := 1.
Step 9. If

DZ(xk, dk; εk, αk) � −1

2
max[(dk)T H kdk, ‖c(xk; εk)‖2], (18)

go to Step 11.
Step 10. Set εk := σεk. If Z(xk; εk) > Z(x1; εk), go to Step 13; otherwise, go to

Step 9.
Step 11. If xk + αkdk ∈ A and

Z(xk + αkdk; εk) � Z(xk; εk) + µαkDZ(xk, dk; εk, αk), (19)

go to Step 12; otherwise, set αk := θαk, and go to Step 9.
Step 12. Set τ k+1 := τ k, γ k+1 := γ k, εk+1 := εk, xk+1 := xk + αkdk; generate

Hk+1 and βk+1. Set k := k + 1, and go to Step 0.
Step 13. Set xk := x1; generate new Hk and βk , go to Step 0.

In the above algorithm we use automatic adjustment rules for parameters τ , γ
and ε. At early steps, these parameters possibly change many times at one iteration,
but we do not reflect the change in our algorithm. We will prove that after a finite
number of steps these parameters will stay fixed.

In Step 0 to Step 7, we compute the search direction dk . To this end, we first
solve subproblem (11). If (17) is not satisfied, we then solve another subproblem
(13). We will prove later that dk, whether from (11) or (13), satisfies the descent
condition (18) after at most finite times of the reduction of ε as long as (17) holds.
We will also prove that eventually we only require solving subproblem (14) at each
iteration, so that (11) or (13) is solved only in early stages of the algorithm, when
the iterate is far from the feasible region.

Step 9 to Step 11 are similar to the associated steps of the algorithm in [6]. At
Step 9, we decide whether ε has to be reduced. If (18) is not satisfied, we reduce
ε (Step 10); otherwise, we perform an Armijo-like test (Step 11). By using the
Armijo-like test, we can force the approximation directional derivative DZ to 0,
so that (18) will ensure that dk and c(xk; εk) tend to 0. By Proposition 2.2 (iii),
c(xk; ε) → 0 for some fixed ε > 0 shows that we are converging to a feasible
point and hence, by Proposition 3.4 (ii), dk → 0 implies that such point is a KKT
point of problem (P).

To prove the well-definedness and convergence of the above algorithm, we
assume that the next hypothesis holds.

ASSUMPTION A4. Hk ∈ R
n×n is symmetric positive definite and there exists

some constant C > 0 such that for all k,

‖Hk‖ � C, ‖(H k)−1‖ � C and
1

C
� βk � C.
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By quasi-Newton updates of an augmented Lagrangian and βk := trace(Hk),
the above assumption holds, e.g., see [4] for details. From now on, we assume that
Assumptions A1–A4 hold.

PROPOSITION 3.5. Algorithm 3.1 cannot cycle infinitely between Step 1 and Step
3, Step 6 and Step 7, respectively.

Proof. The assertion follows directly from Proposition 3.3 and Corollary 3.1. �
LEMMA 3.1. dk �= 0 whenever we come to Step 9.

Proof. We only need to consider the case ψ(xk) > 0. Suppose by contradiction
that dk = 0. Then uk

Pk � gPk (xk) and hence it follows from (17) that

(1 − ω/τk)
∑
i∈Pk

vi(x
k)gi(x

k) �
∑
i∈Pk

vi(x
k)uki �

∑
i∈Pk

vi(x
k)gi(x

k) > 0,

which contradicts 1 − ω/τk < 1. �
PROPOSITION 3.6. Algorithm 3.1 cannot cycle infinitely between Step 9 and Step
10.

The proof of the above proposition is given in Appendix A. The proof of the
next proposition can be omitted, since it is similar to that of Proposition 3.5 in [6].

PROPOSITION 3.7. Algorithm 3.1 cannot cycle infinitely between Step 9 and Step
11.

The above analysis shows that Algorithm 3.1 is well-defined.

4. Global Convergence

This section devotes to prove global convergence of Algorithm 3.1. First, we show
that the parameters τ and ε are updated only a finite number of times and that even-
tually the search direction dk is obtained by solving subproblem QP0(x

k,H k;Ak).
Then we prove dk → 0 and c(xk, εk) → 0 so that every limit point of the sequence
{xk} generated by Algorithm 3.1 is a KKT point of problem (P). From Proposition
3.4 (ii), we deduce immediately the following proposition.

PROPOSITION 4.1. If Algorithm 3.1 terminates at Step 1, i.e., (dk, uk
P k ) = (0, 0),

then xk is a KKT point of problem (P ).

Without loss of generality, we assume that Algorithm 3.1 generates an infinite
iterative sequence {xk}. The next lemma was proved in [6].

LEMMA 4.1. Let {xk} and {εk} be two sequences such that xk ∈ A, Z(xk; εk) �
Z(x1; εk) for any k and {εk} ↓ 0. Then, every limit point of the sequence {xk}
belongs to A.
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PROPOSITION 4.2. The parameters τ and γ can be changed for only a finite
number of times; i.e., there exists an iteration index k̃ such that

τ k = τ̃ and γ k = γ̃ , for all k � k̃.

Proof. By the construction of Algorithm 3.1, the parameter τ can be increased
only at Step 3, Step 4 and Step 7, while the parameter γ can be reduced only at Step
4. The assertion then follows from Proposition 3.2, Proposition 3.3 and Corollary
3.1. �

The above proposition, altogether with Proposition 3.2 and Step 4 of the al-
gorithm, shows that: if ψ(xk) � γ̃ , then

∑
i∈Pk

uki = 0. Hence the search direction dk

is actually a KKT point of problem QP0(x
k,H k;Ak).

Similar to the proof of Theorem 5.3 in [17], we can deduce the following results.

PROPOSITION 4.3. The solution (dk, uk
P k ) and the related multiplier ρk of prob-

lem QP1(x
k,H k;Ak, τ k, βk) are uniformly bounded with respect to (∇f (xk), τ k).

Moreover, for all xk ∈ {x ∈ A : ψ(x) � γ̃ }, the solution (dk, uk
P k ) and the related

multiplier ρk of problem QP2(x
k,H k;Ak, τ k, βk) are also uniformly bounded with

respect to (∇f (xk), τ k).

The proof of the next proposition is put in Appendix A.

PROPOSITION 4.4. The penalty parameter ε can be reduced only a finite number
of times at Step 10.

Without loss of generality, we assume εk = ε̃ for all k by the above proposition.

PROPOSITION 4.5. After a finite number of steps we will always obtain the
direction dk from Step 1, i.e., Step 6 and Step 7 are never used.

Proof. The proof is by contradiction. If the proposition does not hold, there
exists an infinite subsequence {xr } of {xk} such that, at xr , we get dr from Step 6
and xr → x̃ ∈ Ā. Noting that {Z(xk; ε̃)} is monotonically decreasing and that the
level sets of Z(x; ε̃) are compact, we have x̃ /∈ ∂A and lim

k→∞
Z(xk; ε̃) = Z(x̃; ε̃).

By (18) and (19), we have

αrDZ(xr, dr ; ε̃, αr) → 0.

We consider the two possible cases below:

Case 1. DZ(xr, dr; ε̃, αr) → 0.
By (18), we have

c(xr ; ε̃) → 0. (20)

This implies x̃ ∈ F and hence for r sufficiently large,
∑
i∈P r

uri = 0, i.e., dr is

obtained from Step 1. So, we obtain a contradiction.
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Case 2. αr → 0.
Without loss of generality, we assume that {dr} converges to d̃ . From the con-

struction of Algorithm 3.1, we deduce that for r sufficiently large, α̃r := αr/θ does
not satisfy (19), i.e.,

[Z(xr + α̃rdr; ε̃) − Z(xr ; ε̃)]/α̃r > µDZ(xr, dr ; ε̃, α̃r ). (21)

Hence, it follows from the continuity assumptions and (16) that

(1 − µ)∇Z(x̃; ε̃)T d̃ � 0. (22)

Moreover, by (16) and (18), we also have

∇Z(x̃; ε̃)T d̃ � 0. (23)

So, we obtain

∇Z(x̃; ε̃)T d̃ = 0,

which shows DZ(xr, dr; ε̃, αr) → 0. But then we can argue as in Case 1, and
hence complete the proof. �

We have the following convergence results.

THEOREM 4.1. (i)

lim
k→∞ ‖dk‖ = 0 and lim

k→∞ ‖c(xk; ε̃)‖ = 0. (24)

(ii) Each accumulation point of the sequence {xk} generated by Algorithm 3.1
is a KKT point of problem (P ).

Proof. (i) From the fact that {Z(xk; ε̃)} is monotonically decreasing and bounded
from below, it follows that {Z(xk; ε̃)} is convergent and hence, by (18) and (19),
we have

lim
k→∞ αkDZ(xk, dk; ε̃, αk) = 0. (25)

Suppose that (24) is false. Then there exist a constant C0 > 0 and a subsequence
{xr} of {xk}, such that for all r,

‖dr‖ > C0 (26)

or

‖c(xr ; ε̃)‖ > C0 and lim
k→∞ ‖dk‖ = 0. (27)

By (18), (25)–(27) and Assumption A4, we deduce

lim
r→∞ αr = 0. (28)
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Moreover, without loss of generality, we can assume by the compactness of the
level sets of Z(x; ε̃) and Proposition 4.3 that lim

r→∞ xr = x̃ ∈ A and lim
r→∞ dr = d̃ .

Consider first the case ‖dr‖ > C0 for all r. In this case, d̃ �= 0. It follows from
(28), (16) and (18) that

lim
r→∞DZ(xr, dr; ε̃, αr) = ∇Z(x̃; ε̃)T d̃ < 0. (29)

Let α̃r := αr/θ . By the construction of Algorithm 3.1, we have, for r sufficiently
large,

[Z(xr + α̃rdr; ε̃) − Z(xr ; ε̃)]/α̃r > µDZ(xr, dr ; ε̃, α̃r ). (30)

Passing to the limit in (30) and taking into account (16) and lim
r→∞ α̃r = 0, we have

(1 − µ)∇Z(x̃; ε̃)T d̃ � 0.

This contradicts (29) and 0 < µ < 1.
Then consider the case ‖c(xr ; ε̃)‖ > C0 for all r and lim

k→∞
‖dk‖ = 0. In this

case, d̃ = 0. It follows from (29) that

lim
r→∞DZ(xr, dr; ε̃, αr) = 0.

This contradicts to (18) and ‖c(xr ; ε̃)‖ > C0 for all r. Therefore, (24) is proved.
(ii) Without loss of generality, assume that lim

k→∞ xk = x̃ ∈ A and lim
k→∞Hk = H̃ .

By continuity and the definition of c(x; ε), it follows from (24) that

c(x̃; ε̃) = 0.

This implies x̃ ∈ F and hence for k sufficiently large, dk is a KKT point of problem
QP0(x

k,H k;Ak).
Moreover, there exists an infinite subsequence {Ar} of {Ak}, such that for all r,

Ar = Â

where Â is some subset of I . Therefore, lim
k→∞

‖dk‖ = 0 shows that d = 0 is a KKT

point of problem QP0(x̃, H̃ ; Â). The assertion then follows from Proposition 3.4
(ii). �

5. Superlinear Convergence

In this section we study the rate of convergence result of Algorithm 3.1. We will
deduce that under mild assumptions the whole sequence {xk} generated by the
algorithm converges and that if an unit steplength ensures superlinear convergence,
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then eventually the unit steplength is obtained so that the Maratos effect does not
occur. To this end, we need to strengthen the regularity assumptions on the func-
tions involved. Let x∗ be an accumulation point of the sequence {xk} generated by
the algorithm and λ∗ be the related multiplier. Then it follows from Theorem 4.1
(ii) that (x∗, λ∗) is a KKT pair for problem (P). Moreover, a function h : R

n → R

is said to be an SC1-function on an open set A if h is continuously differentiable
on A and ∇h is semismooth (see [15]) on A.

ASSUMPTION A5. Every component of the gradient of f (x) and of the Jacobian
of g(x) is an SC1-function on A.

ASSUMPTION A6. Strong second-order sufficient condition holds at (x∗, λ∗),
i.e., the Hessian ∇2L(x∗, λ∗) is positive definite on the space {u : ∇gi(x

∗)T u =
0, ∀i ∈ I+(x∗)}, where I+(x∗) := {i ∈ I0(x

∗) : λ∗
i > 0}.

PROPOSITION 5.1. Under the stated assumptions, the whole sequence {xk} con-
verges to x∗.

Proof. Assumption A2 and A6 mean that x∗ is an isolated accumulation point
of {xk}, see [16]. The assertion then follows from [11] and Theorem 4.1 (i). �

It follows from Lemma 5.1 in [6] that for every positive ε, Z(x; ε) is an SC1-
function on A. Then applying Theorem 3.2 in [5] and similar to the proof of
Theorem 5.2 in [6], we deduce the next theorem.

THEOREM 5.1. Suppose that the stated assumptions hold. If

lim
k→∞

‖xk + dk − x∗‖
‖xk − x∗‖ = 0,

then for all sufficiently large k, the unit steplength is accepted by the algorithm.
That is,

xk+1 = xk + dk.

6. Numerical Results

In this section we report some numerical results to show viability of Algorithm 3.1,
using a subset of test problems from Hock and Schittkowski [8]. The algorithm
was coded in Matlab and run on a DEC George Server 8200. A brief sketch of our
implementation is given as follows:

The method of Gill and Murray [9] was used to solve QP subproblems (11) and
(13). The initial guess for the Lagrangian Hessian was H 1 = In. Updating of the
Hessian approximation Hk was done using the damped BFGS formula described
in Powell [14] with λ(x) as the KKT multiplier estimation at x. We took βk =
trace(H k).
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Table 1. Starting points for test problems

Problem n m Starting point (a) Starting point (b)

HS34 3 8 (0,1.05,2.9) (0,0,0)

HS35 3 4 (0.5,0.5,0.5) (1,1,1)

HS36 3 7 (10,10,10) (10,11.5,10)

HS37 3 8 (10,10,10) (20,20,20)

HS43 4 3 (0,0,0,0) (2,2,2,2)

HS44 4 10 (0,0,0,0) (2,2,2,2)

HS65 3 7 (0,0,0) (-5,5,0)

HS66 3 8 (0,1.05,2.9) (1,1,1)

HS93 6 8 (5.54,4.4,12.02,11.82,0.702,0.852) (3,3,3,3,3,3)

HS100 7 4 (1,2,0,4,0,1,1) (3,2,1,4,1,1,2)

The parameters used in this implementation were set as

β1 = 1, µ = 0.1, ω = 0.5, τ 1 = 1, θ = 0.5, γ 1 = 10000,

σ = 0.1, σ1 = 10 and ε1 = 3.0.

All the test problems in this implementation have inequality constraints only. We
use two initial values for the primal variable: points (a) and (b), where (a) is feasible
and (b) is infeasible, see Table 1; and one of them was taken from [8]. In this table
the first column gives the problem number from [8], n and m are the numbers of
the variables and of the constraints respectively.

The termination criterion for the algorithm was

‖(dk, uk
P k )‖ � 10−10.

The precision for the solution of QP subproblems was also 10−10. We summarize
the numerical results on 10 test problems in Table 2. In this table I ter is the
number of iterations, Nf and Ng denote the numbers of evaluations of f and g

respectively. Fv is the final value of the function f and Prec denotes the precision
of the termination criterion in Algorithm 3.1. Point denotes starting point (a) or
(b). Moreover, the numbers of evaluations of ∇f and ∇g are the same as that of g.

All test problems with starting points chosen in Table 1 were solved success-
fully. The results of the numerical experiments show that the proposed algorithm
works well and is quite promising.

7. Conclusion

By applying Spellucci’s technique for dealing with inconsistent problems in the
SQP method into the merit function developed by Lucidi, we present a new SQP
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Table 2. Numerical results on test problems

Problem Iter Nf Ng Fv Prec Point

HS34 34 161 162 −0.83403244524796 0 (a)
13 32 33 −0.83403244526530 0 (b)

HS35 10 46 46 0.11111111111111 0 (a)
9 11 12 0.11111111111111 0 (b)

HS36 3 7 7 −3300 0 (a)
5 10 10 −3300 0 (b)

HS37 12 34 34 −3456.000000000001 0 (a)
29 113 119 −3456.000000000001 0 (b)

HS43 14 29 29 −44.00000000000001 0 (a)
19 60 65 −44.00000000000011 0 (b)

HS44 7 13 13 −15 0 (a)
8 18 21 −15 0 (b)

HS65 13 38 39 0.95352885680478 0 (a)
15 41 44 0.95352885680188 0 (b)

HS66 8 8 8 0.51816327418154 0 (a)
14 26 28 0.51816327418153 0 (b)

HS93 21 62 66 135.0759628317741 0 (a)
34 79 84 135.0759628315913 0 (b)

HS100 28 96 96 680.6300573744018 0 (a)
26 90 92 680.6300573743961 0 (b)

algorithm for solving nonlinear constrained optimization problems. The proposed
algorithm possesses both the merits of the method in [6] and the merits of the
method in [17]. In the algorithm, the subproblems are always consistent and do
not necessarily contain all constraints. Under suitable assumptions we established
global convergence. Superlinear convergence result was also obtained without as-
suming the strict complementarity. Moreover, we use an approximated direction
derivative of the merit function so that only first order derivatives of the problem
functions are required to evaluate.

We observe that Assumption A3 is a stronger condition. It might be an in-
teresting topic for future research how to weaken Assumption A3 to the weak
Mangasarian–Fromowitz condition as in [10] within the framework of our algorithm.

Appendix A

Proof of Proposition 3.1. Assume that (1) is consistent. The KKT conditions of (1)
are as follows:

Hd + ∇f (x) + ∇g(x)λ = 0,

λ � 0, g(x) + ∇g(x)T d � 0,

λT [g(x) + ∇g(x)T d] = 0.

(31)
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Since (11) has always a unique optimal solution, the KKT conditions (12) are
necessary and sufficient for optimality. Due to gi(x) < 0 for i /∈ A, the term
‖d‖ small enough means

gi(x) + ∇gi(x)
T d < 0 for i /∈ A. (32)

Hence it follows from (31) that (d, uP = 0) solves (12) provided that

τ � max{λi : i ∈ P },
with ρA := λA and νP := τeP − λP � 0. Conversely, if (d, 0) is a solution of (11)
and ‖d‖ is small enough such that (32) is satisfied, then it follows from (12) that d,
λA := ρA, λi := 0 for i /∈ A satisfy (31). The proof is complete. �

The following two lemmas are due to Theorems 3.4 and 3.5 of Spellucci [17]
and play a crucial role in the subsequent proof. It is not difficult to deduce that
there exists some ψ0 > 0 such that 3(ψ0) ⊆ A.

LEMMA 1. Under Assumptions A1–A3, there exists some pair A > 0 and δ̄ > 0
independent of x, such that for any x ∈ A and for 0 � δ � δ̄, there exists some
d �= 0 satisfying

‖d‖ � A and ∇gA(x,δ)(x)
T d � −eA(x,δ).

LEMMA 2. Under Assumptions A1-A3, there exists some triple ξ ∗ ∈ [0, 1], ν∗ >
0, A > 0, such that for any x ∈ A and for 0 < ξ � ξ ∗ there exists some d �= 0
satisfying

‖d‖ � A,

ξgP0(x) + ∇gP0(x)
T d � −ν∗eP0,

gP̄0
(x) + ∇gP̄0

(x)T d � −ν∗eP̄0
,

where P̄0 := I\P0.
Proof of Proposition 3.2. It follows from Lemma 1 that there exists some pair

A > 0 and δ̄ > 0 independent of x, such that

∇gA(x,δ̄)(x)
T d(x) � −eA(x,δ̄)

for some d(x) with ‖d(x)‖ � A. For i ∈ A(x, δ̄), we have

gi(x) + ∇gi(x)
T d(x)(ψ(x) + δ̄/(4M1A))

� ψ(x) − ψ(x) − δ̄/(4M1A)

= −δ̄/(4M1A).

For i /∈ A(x, δ̄), we get

gi(x) + ∇gi(x)
T d(x)(ψ(x) + δ̄/(4M1A))

� −δ̄ + M1Aψ(x) + M1Aδ̄/(4M1A)

� −δ̄/4,
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if ψ(x) � δ̄/(2M1A). Let η̄ := min{ψ0, δ̄/(2M1A)}. Then for any x ∈ 3(η̄),
d := d(x)(ψ(x) + δ̄/(4M1A)) satisfies

g(x) + ∇g(x)T d � −νe

with ν := min{δ̄/4, δ̄/(4M1A)}. This means that the problem (1) is consistent
and satisfies a Slater-condition uniformly in x. Since its Hessian and their inverse
are uniformly bounded if ‖H‖ and ‖H−1‖ are, its multiplier λ is also uniformly
bounded. It follows from the proof of Proposition 3.1 that for any β > 0 and
τ > max{λi : i ∈ P }, (d, uP = 0) solves (11). The proof is complete. �

Proof of Proposition 3.3. In the following proof we use the constants A, ξ ∗, δ̄
and ν∗ given in Lemma 1 and Lemma 2. We proved in Proposition 3.2 the following
assertion: If ψ(x) � η̄ with η̄ := min{ψ0, δ̄/(2M1A)}, then there exists some τ ∗

1
such that for τ � τ ∗

1 , uP = 0.
We now consider another case: ψ(x) > η̄. It follows from Lemma 2 that for

every x ∈ A there exists some d̃ such that

‖d̃‖ � A,

ξ ∗gP0(x) + ∇gP0(x)
T d̃ � −ν∗eP0,

gP̄0
(x) + ∇gP̄0

(x)T d̃ � −ν∗eP̄0
.

Let

ũP := (1 − ξ ∗)gP (x).

Then (d̃, ũP ) is feasible for (11) and we have

1

2
d̃T H d̃ + ∇f (x)T d̃ + τeTP ũP + 1

2
β‖ũP ‖2

� C + (1 − ξ ∗)τψ(x) + 1

2
βψ(x)2,

(33)

where

C := M1A+ 1

2
A2‖H‖

is uniformly bounded if ‖H‖ is.
For every d ∈ R

n, we get

1

2
dTHd + ∇f (x)T d = 1

2
(H 1/2d)TH 1/2d + ∇f (x)T d

� −1

2
(H−1/2∇f (x))T (H−1/2∇f (x))

= −1

2
∇f (x)T H−1∇f (x)

� −1

2
M2

1 ‖H−1‖.

(34)
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Moreover, the solution (d, uP ) of (11) satisfies

1

2
dTHd + ∇f (x)T d + τeTP uP + 1

2
β‖uP ‖2

� 1

2
d̃T H d̃ + ∇f (x)T d̃ + τeTP ũP + 1

2
β‖ũP ‖2,

which together with (33) and (34), implies

τ
∑
i∈P(x)

ui � (1 − ξ ∗)τψ(x) + C1, (35)

where C1 satisfies

C1 � C + 1

2
M2

1‖H−1‖ + 1

2
βψ(x)2

for x ∈ A. Let

τ ∗
2 := 2C1

ξ ∗η̄
.

Then for τ � τ ∗
2 , (35) implies∑

i∈P(x)
ui � (1 − ξ ∗/2)ψ(x).

The assertion is satisfied with τ ∗ := max{τ ∗
1 , τ

∗
2 } and L := 1 − ξ ∗/2. �

Proof of Corollary 3.1. Repeating with minor modifications the proof of Pro-
position 3.3, we can deduce

τ
∑
i∈P(x)

vi(x)ui � (1 − ξ ∗)τ
∑
i∈P(x)

vi(x)gi(x) + C1 (36)

for x ∈ A. If ψ(x) � η, then∑
i∈P(x)

vi(x)gi(x) �
∑
i∈P(x)

gi(x)
2 � ψ(x)2/m � η2/m.

It follows from (36) that the first assertion is satisfied with L := 1 − ξ ∗/2 and

τ ∗ := 2mC1

ξ ∗η2 ,

which implies the second assertion. �
Proof of Proposition 3.6. We only need to show that: if H̃ ∈ R

n×n is positive
definite, δ̃ > 0, τ̃ > 0, β̃ > 0 and x̃ ∈ A, then for every η ∈ [0, 1) and t̃ > 0, there
exists an ε̃ > 0 such that for all ε ∈ (0, ε̃] and all t ∈ (0, t̃],

DZ(x̃, d̃; ε, t) � −ηmax[d̃T H̃ d̃, ‖c(x̃; ε)‖2],
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where (d̃, ũP̃ ) is the solution of problem QP1(x̃,H̃ ;Ã,τ̃ ,β̃) or QP2(x̃,H̃ ;Ã,τ̃ ,β̃)
with Ã := A(x̃, δ̃) and P̃ := P(x̃).

If we come to Step 9, it follows from Lemma 3.1 that d̃ �= 0. We can write

DZ(x̃, d̃; ε, t) =∇f (x̃)T d̃ +
m∑
i=1

[
λi(x̃) + 1

εa(x̃)
ri(x̃; ε)

]
∇gi(x̃)

T d̃

+
m∑
i=1

1

t
[λi(x̃ + t d̃) − λi(x̃)]ci(x̃; ε).

(37)

Moreover, we deduce from the continuous differentiability of λ(x) that there exists
a constant B > 0 such that

1

t
[λi(x̃ + t d̃) − λi(x̃)] � B, ∀i ∈ I and t ∈ (0, t̃].

If gi(x̃) > 0, then ∇gi(x̃)
T d̃ � ũi − gi(x̃), ci(x̃; 0) = gi(x̃), and ri(x̃; 0) =

2vi(x̃) > 0. Hence by (17), we have

lim
ε→0

∑
i∈P̃

{[
λi(x̃) + 1

εa(x̃)
ri(x̃; ε)

]
∇gi(x̃)

T d̃ + 1

t
[λi(x̃ + t d̃) − λi(x̃)]ci(x̃; ε)

}

� lim
ε→0

∑
i∈P̃

{
λi(x̃)∇gi(x̃)

T d̃ + 1

εa(x̃)
ri(x̃; ε)[ũi − gi(x̃)] + ci(x̃; ε)B

}
(38)

= −∞.

If gi(x̃) = 0, then ∇gi(x̃)
T d̃ � 0 and

ci(x̃; ε) = y2
i (x̃; ε) = − min

[
0,

εa(x̃)

2
λi(x̃)

]
.

Hence, ci(x̃, 0) = 0 and

lim
ε→0

{[
λi(x̃) + 1

εa(x̃)
ri(x̃; ε)

]
∇gi(x̃)

T d̃ + 1

t
[λi(x̃ + t d̃) − λi(x̃)]ci(x̃; ε)

}
= lim

ε→0
{λi(x̃) − min[0, λi(x̃)]}∇gi(x̃)

T d̃ � 0.

(39)

If gi(x̃) < 0, then g+
i (x̃) = 0 and gi(x̃) + εa(x̃)

2 λi(x̃) < 0 for all sufficiently
small ε > 0. Therefore,

ci(x̃; ε) = −εa(x̃)

2
λi(x̃) and ri(x̃; ε) = −εa(x̃)λi(x̃).
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So, we have

lim
ε→0

{[
λi(x̃)+ 1

εa(x̃)
ri(x̃; ε)

]
∇gi(x̃)

T d̃+ 1

t
[λi(x̃+t d̃)−λi(x̃)]ci(x̃; ε)

}
=0.

(40)

We shall show the assertion by distinguishing the following two possible cases:

Case 1. x̃ ∈ F .
Note that g(x̃) � 0. By (37), (39), (40) and (12), we get

lim
ε→0

DZ(x̃, d̃; ε, t) � ∇f (x̃)T d̃

= −d̃T H̃ d̃ − d̃T ∇gÃ(x̃)ρÃ

= −d̃T H̃ d̃ + gÃ(x̃)
T ρÃ

� −d̃T H̃ d̃.

The assertion then follows from the fact that 0 � η < 1 and c(x̃; 0) = 0.

Case 2. x̃ ∈ A\F .
In this case, by (37)–(40), we have, for all t ∈ (0, t̃],

lim
ε→0

DZ(x̃, d̃; ε, t) = −∞,

and hence the assertion is obvious. �
Proof of Proposition 4.4. Suppose that the assertion does not hold. Then, there

exist sequences {xr} ⊆ A, {Hr} ⊆ R
n×n, {εr}, {αr} generated by Algorithm 3.1,

such that

xr → x̃, H r → H̃ , εr → 0, αr ∈ (0, 1],
and

DZ(xr, dr; εr , αr) > −1

2
max[(dr )T H rdr, ‖c(xr ; εr)‖2]. (41)

By Lemma 4.1, we only need to consider the following two possible cases. We
will obtain a contradiction in each case.

Case 1. x̃ ∈ A\F .
Using (15), we can write

DZ(xr, dr ; εr , αr) =∇f (xr)T dr +
m∑
i=1

[
λi(x

r ) + 1

εra(xr )
ri(x

r; εr )
]

∇gi(x
r)T dr

+
m∑
i=1

1

αr [λi(xr + αrdr) − λi(x
r )]ci(xr; εr ).

(42)
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Since f (x) and λ(x) are continuously differentiable, it follows from Proposition
4.3 that the first and third terms of the expression (42) are bounded.

We now consider the second term of (42). Noting that the number of subsets in
I is finite, without loss of generality, we can assume Ar = Â and P r = P̂ for all
r, where Â and P̂ are subsets of I . Moreover, we assume that τ r = τ̃ for all r,
dr → d̃ and βr → β̃. From (12) and (17), we deduce∑

i∈P̂
vi(x

r)∇gi(x
r )T dr �

∑
i∈P̂

vi(x
r )[uri − gi(x

r )]

� −ω

τ̃

∑
i∈P̂

vi(x
r)gi(x

r).

Therefore, we have

lim
r→∞

∑
i∈P̂

ri(x
r; εr)∇gi(x

r)T dr = 2
∑
i∈P̂

vi(x̃)∇gi(x̃)
T d̃

� −2ω

τ̃

∑
i∈P̂

vi(x̃)gi(x̃) < 0.

This shows

lim
r→∞

∑
i∈P̂

[
λi(x

r ) + 1

εra(xr )
ri(x

r ; εr)
]

∇gi(x
r )T dr = −∞.

On the other hand, for i ∈ I\P̂ , g+
i (x

r) = 0 and[
λi(x

r ) + 1

εra(xr )
ri(x

r ; εr)
]

∇gi(x
r )T dr

=
[
λi(x

r ) + 1

εra(xr )
2ci(x

r; εr)
]

∇gi(x
r)T dr

= 2

εra(xr )
max

{
gi(x

r) + εra(xr )

2
λi(x

r ), 0

}
∇gi(x

r )T dr .

(43)

If gi(xr ) + εra(xr )
2 λi(x

r) � 0, then gi(x
r) � −εra(xr )

2 λi(x
r ) � −δr ; i.e., i ∈

Â\P̂ and

∇gi(x
r )T dr � −gi(x

r) � εra(xr )

2
λi(x

r).

Hence, by (43), we have[
λi(x

r ) + 1

εra(xr )
ri(x

r ; εr)
]

∇gi(x
r )T dr

� λi(x
r)max

{
gi(x

r) + εra(xr )

2
λi(x

r ), 0

}
.
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While if gi(xr ) + εra(xr )
2 λi(x

r) < 0, then by (43), we get[
λi(x

r ) + 1

εra(xr )
ri(x

r ; εr)
]

∇gi(x
r )T dr = 0.

So, for i ∈ I\P̂ , [λi(xr) + 1
εra(xr )

ri(x
r ; εr)]∇gi(x

r )T dr is bounded from above.

The above analysis shows that

DZ(xr, dr; εr , αr) → −∞,

which contradicts (41).

Case 2. x̃ ∈ F .
In this case, for r sufficiently large, dr is the solution of problem QP0(x

r ,H r;Ar)

by Proposition 3.2. Moreover, passing to a subsequence if necessary, without loss
of generality, we can assume that for all r,

Ar = Â (44)

where Â is some subset of I .
Let (d̃, ρ̃Â) be a KKT pair for problem QP0(x̃, H̃ ; Â). By Proposition 3.2 in

[6], d(x,H) is continuous in a neighborhood of (x̃, H̃ ). Hence, dr → d̃ .
Consider first the case d̃ �= 0. By the proof of Proposition 3.6, we deduce that

lim
ε→0

DZ(x̃, d̃; ε, t) � −d̃T H̃ d̃

for all t ∈ (0, 1]. From the fact thatDZ(x, d; ε, t) is continuous and lim
r→∞ c(xr ; εr) =

0, we have, for r sufficiently large,

DZ(xr, dr; εr , αr) � −1

2
max[(dr)T H rdr, ‖c(xr ; εr)‖2],

which contradicts (41).
Then consider the case d̃ = 0. Assumption A4 implies that for all r,

(dr)T H rdr � 1

C
‖dr‖2. (45)

Let ρr
I\Â := 0 for all r. Similar to the proof of Lemma 4.3 in [6], we can deduce

that there exists a constant γ2 > 0 such that

‖λ(xr ) − ρr‖ � γ2‖dr‖. (46)

Moreover, the differentiability of λ(x) implies that there exists a constant γ3 > 0
such that

1

αr ‖λ(xr + αrdr) − λ(xr)‖ � γ3‖dr‖. (47)
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For r sufficiently large, if i ∈ P r , then g+
i (x

r) = gi(x
r ) > 0 and ∇gi(x

r)T dr �
−gi(x

r ) < 0; while if i ∈ I\P r , then g+
i (x

r) = 0. And renumbering if necessary,
we can suppose without loss of generality that we can partition Â into two subsets
B and Â\B such that

ρrB � 0, gB(x
r ) + ∇gB(x

r)T dr = 0, (48)

and

ρr
Â\B = 0, gÂ\B(x

r) + ∇gÂ\B(x
r)T dr < 0. (49)

Let B̄ := I\B. Then ρr
B̄

= 0. From (15), (41), (48) and the KKT system of

QP0(x
r ,H r; Â), we obtain

0 < DZ(xr, dr; εr , αr) + 1

2
max[(dr)T H rdr, ‖c(xr ; εr)‖2]

� −1

2
(dr)T H rdr + 1

2
‖c(xr ; εr)‖2

+ (dr)T∇g(xr )(λ(xr) − ρr) + 2

εra(xr )
(dr)T∇g(xr)c(xr ; εr)

+ 1

αr [λ(xr + αrdr) − λ(xr)]T c(xr; εr )

= −1

2
(dr)T H rdr + 1

2
‖c(xr ; εr)‖2

− gB(x
r )T (λB(x

r ) − ρrB) + (dr)T∇gB̄(x
r)λB̄(x

r)

− 2

εra(xr )
gB(x

r)T cB(x
r ; εr) + 2

εra(xr )
(dr)T∇gB̄(x

r )cB̄(x
r; εr)

+ 1

αr [λ(xr + αrdr) − λ(xr)]T c(xr; εr ).

(50)

Denote

B+(xr) := {i ∈ B | 2gi(x
r) + εra(xr )λi(x

r ) � 0},
B−(xr) := {i ∈ B | 2gi(x

r) + εra(xr )λi(x
r ) < 0},

B̄+(xr) := {i ∈ B̄ | 2gi(x
r) + εra(xr )λi(x

r ) � 0},
B̄−(xr) := {i ∈ B̄ | 2gi(x

r) + εra(xr )λi(x
r ) < 0}.
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If i ∈ B+(xr) ∪ B̄+(xr), then ci(x
r ; εr) = gi(x

r ); while if i ∈ B−(xr ) ∪ B̄−(xr ),
then ci(x

r; εr) = −εra(xr )
2 λi(x

r ). Therefore,

− gB(x
r)T (λB(x

r ) − ρrB) − 2

εra(xr )
gB(x

r)T cB(x
r ; εr)

= −cB(x
r; εr)T (λB(xr) − ρrB) − 2

εra(xr )
‖cB(xr ; εr)‖2

− (cB−(x
r ; εr) − gB−(x

r ))T ρrB−

� γ2‖cB(xr ; εr)‖‖dr‖ − 2

εra(xr )
‖cB(xr ; εr)‖2.

(51)

If i ∈ B̄+(xr ), then gi(x
r ) � −εra(xr )

2 λi(x
r ) � −δr . This shows i ∈ Â\B.

Hence, (49) holds and

(dr)T ∇gB̄(x
r )λB̄(x

r ) + 2

εra(xr )
(dr)T∇gB̄(x

r )cB̄(x
r ; εr)

= (dr)T∇gB̄+(x
r )

[
λB̄+(x

r ) + 2

εra(xr )
gB̄+(x

r)

]

� −gB̄+(x
r)T

[
λB̄+(x

r ) + 2

εra(xr )
gB̄+(x

r)

]

� − 2

εra(xr )
‖gB̄+(x

r)‖2 + γ2‖gB̄+(x
r )‖‖dr‖.

(52)

Moreover, it is not difficult to deduce that

1

αr [λ(xr + αrdr) − λ(xr)]T c(xr ; εr)

� 1

αr ‖λB(xr + αrdr) − λB(x
r)‖‖cB(xr; εr)‖

+ 1

αr ‖λB̄(xr + αrdr) − λB̄(x
r )‖‖cB̄(xr ; εr)‖

� γ3‖dr‖[‖cB(xr; εr )‖ + ‖gB̄+(x
r)‖ + ‖cB̄−(x

r ; εr)‖]
� γ3‖cB(xr ; εr)‖‖dr‖ + γ3‖gB̄+(x

r)‖‖dr‖ + εra(xr )γ2γ3

2
‖dr‖2

(53)

and

1

2
‖c(xr ; εr)‖2 = 1

2
‖cB(xr; εr)‖2 + 1

2
‖gB̄+(x

r)‖2 + 1

2
‖cB̄−(x

r ; εr)‖2

� 1

2
‖cB(xr; εr)‖2 + 1

2
‖gB̄+(x

r )‖2 + (εra(xr )γ2)
2

8
‖dr‖2.

(54)
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Combining (50) and (51)–(54), we obtain

−
(

1

2C
− εra(xr )γ2γ3

2
− (εra(xr )γ2)

2

8

)
‖dr‖2

+ (γ2 + γ3)‖cB(xr; εr)‖‖dr‖ −
(

2

εra(xr )
− 1

2

)
‖cB(xr ; εr)‖2

+ (γ2 + γ3)‖gB̄+(x
r )‖‖dr‖ −

(
2

εra(xr )
− 1

2

)
‖gB̄+(x

r )‖2 > 0.

(55)

Since lim
r→∞ εr = 0, for εr sufficiently small, the left-hand side of (55) is a negative-

definite quadratic form in ‖dr‖, ‖cB(xr ; εr)‖, ‖gB̄+(x
r )‖. So, we obtain a contra-

diction, completing the proof. �
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